Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Etti,^a G. Shanmugam,^a M. N. Ponnuswamy,^a* R. Sridhar,^b R. Murugan,^b P. T. Perumal^b and K. Ravikumar^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDivision of Organic Chemistry, Central Leather Research Institute, Adyar, Chennai 600 020, India, and ^cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: mnpsy@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.043 wR factor = 0.128 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 3-methyl-1-(2,4-dinitrophenyl)-1*H*-pyrazole-4-carboxylate

The title compound, $C_{13}H_{12}N_4O_6$, containing a dinitrophenyl ring substituted on the pyrazole ring, was obtained by a reaction of ethyl acetoacetate (2,4-dinitrophenyl)hydrazone with Vilsmeier reagent. The benzene and pyrazole rings are oriented at an angle of 35.49 (6)° with respect to each other. The packing of the molecules is controlled by intermolecular $C-H\cdots O$ hydrogen bonds, in addition to van der Waals forces.

Received 13 October 2003 Accepted 23 October 2003 Online 31 October 2003

Comment

Pyrazoles find applications in medicine and the pharmaceutical industry. They possess biological activities, such as bacteriostatic, bacteriocidal, fungicidal, analgesic and antipyretic (Malhothra *et al.*, 1997; Potts, 1986). Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system (Vichlayev *et al.*, 1962; Raevskii & Batulin, 1963). The versatile pollen formation inhibitor activity (Richard & Wendellyn, 1986), herbicidal and insecticidal activities (Tsutomu *et al.*, 1989; Susumu *et al.*, 1985) of 1*H*-pyrazole-4-carboxylic acid esters prompted us to carry out the crystal structure determination of the title compound, (I).

The bond lengths and angles in the pyrazole ring of (I) (Fig. 1 and Table 1) are comparable with those reported for similar pyrazole derivatives (Bonati & Bovio, 1990; Fronczek

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

et al., 1989; Jeyakanthan et al., 1999; Mani Naidu et al., 1996). The dihedral angle between the pyrazole and benzene rings, $35.49 (6)^{\circ}$, indicates imperfect conjugation.

The nitro group attached to the ortho position is twisted by an angle of 47.23 (7)° from the plane of the benzene ring. This twisting is due to the presence of a lone pair of electrons on atom N2 of the pyrazole ring, and indicates repulsion of the electron-rich O3 atom of the nitro group; the nitro group at the *para* position is almost coplanar [dihedral angle = $3.14(6)^{\circ}$ with the ring. The ethoxycarbonyl group adopts an extended conformation, as evidenced by the torsion angles C5-O2-C4-C2 of -169.71 (14)° and C4-O2-C5-C6 of 166.06 (17)°.

The C5–C6 bond length of the ester group is shorter than the reported mean $Csp^3 - Csp^3$ distance of 1.497 Å (Allen et al., 1987).

In the crystal structure, inversion-related molecules form C-H···O hydrogen-bonded dimers (Fig. 2). The structure is further stabilized by C-H···O interactions between the dimers (Table 2). In addition, a C4···O6(2 - x, 1 - y, 1 - z)short contact of 2.887 (2) Å and an $O6 \cdots O6(3 - x, 2 - y)$, (1-z) short contact of 2.867 (2) Å are also observed in the structure.

Experimental

To an ice-cold stirred solution of ethyl acetoacetate (2,4-dinitrophenyl)hydrazone (0.31 g, 0.001 mol) in dry DMF (4 ml), 0.46 g of POCl₃ (0.003 mol) was added dropwise. The reaction mixture was allowed to attain room temperature and then refluxed at 343-353 K for about 4 h. The resulting mixture was poured on to crushed ice, neutralized with dilute sodium hydroxide and left standing overnight. The pale-yellow precipitate was purified by silica gel (60-120 mesh) column chromatography with an ethyl acetate-petroleum ether mixture (15:85) to yield the title compound (0.25 g), which was then recrystallized from a mixture of chloroform and methanol (1:1, v/v)by slow evaporation.

Crystal data

$C_{13}H_{12}N_4O_6$	Z = 2
$M_r = 320.27$	$D_x = 1.464 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.7531 (8) Å	Cell parameters from 1829
b = 9.7146 (10) Å	reflections
c = 11.4051 (12) Å	$\theta = 2.0–28.0^{\circ}$
$\alpha = 113.649 \ (2)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 92.989 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 109.089 \ (2)^{\circ}$	Block, pale yellow
$V = 726.74 (13) \text{ Å}^3$	$0.21 \times 0.19 \times 0.18 \text{ mm}$

3210 independent reflections

 $R_{\rm int} = 0.013$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = -9 \rightarrow 10$

 $k = -9 \rightarrow 12$ $l = -15 \rightarrow 13$

2600 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.976, \ T_{\max} = 0.979$ 4623 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0737P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.043$ + 0.0853P] $wR(F^2) = 0.128$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.02 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$ 3210 reflections $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 256 parameters All H-atom parameters refined

Table 1

Selected geometric parameters (Å, °).

O1-C4	1.2097 (18)	N2-C1	1.3195 (19)
O2-C4	1.3282 (18)	C1-C2	1.424 (2)
O2-C5	1.451 (2)	C2-C3	1.367 (2)
N1-C3	1.3514 (19)	C2-C4	1.467 (2)
N1-N2	1.3749 (16)	C5-C6	1.490 (3)
N1-C8	1.4061 (19)		
C4-O2-C5	118.11 (13)	C3-C2-C1	105.48 (13)
C3-N1-N2	111.83 (12)	C3-C2-C4	124.67 (13)
C3-N1-C8	128.32 (12)	C1-C2-C4	129.62 (13)
N2-N1-C8	119.25 (11)	N1-C3-C2	106.80 (13)
C1-N2-N1	105.14 (11)	O1-C4-C2	123.86 (14)
N2-C1-C2	110.73 (12)	O2-C4-C2	111.60 (12)
N2-C1-C7	120.00 (13)	O2-C5-C6	106.50 (16)
C2-C1-C7	129.18 (14)		

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C6-H6A\cdots O5^{i} \\ C13-H13\cdots O1^{ii} \end{array}$	1.00 (4)	2.50 (3)	3.358 (3)	144 (2)
	0.95 (2)	2.34 (2)	3.292 (2)	173 (2)

Symmetry codes: (i) x - 2, y - 1, z; (ii) 1 - x, 1 - y, 1 - z.

H-atom positions were located in a difference Fourier map and their positional and U_{iso} parameters were refined. The C-H distances are in the range 0.90(3)-1.03(2) Å.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SE gratefully acknowledges the award of a Professor R. Srinivasan Endowment Research Fellowship.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bonati, F. & Bovio, B. (1990). J. Crystallogr. Spectrosc. Res. 20, 233-244.
- Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fronczek, F. R., Parodi, F. J., Fischer, N. H., Hsieh, T. C.-Y. & Chang, B.-Y. (1989). Acta Cryst. C45, 2027–2028.
- Jeyakanthan, J., Velmurugan, D., Selvi, S. & Perumal, P. T. (1999). Acta Cryst. C55, 1926–1928.
- Malhothra, S., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1885– 1887.
- Mani Naidu, S., Krishnaiah, M., Sivakumar, K. & Sharma, R. P. (1996). Acta Cryst. C52, 1056–1058.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Potts, K. T. (1986). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A. Oxford: Pergamon Press.
- Raevskii, K. S. & Batulin, Yu. M. (1963). Farmakol. Toksikol. (Moscow), 26, 551–556; Chem. Abstr. (1964). 60, 12562c.
- Richard, B. J. & Wendellyn, P. C. (1986). Eur. Pat. Appl. EP 177 242; Chem. Abstr. (1986). 105, 148199d.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Susumu, Y., Takuya, T., Toshiaki, S., Katsuyuki, M., Takashi, I., Toshihko, O. & Tsutomu, N. (1985). Jpn Kokai Tokyo Koho JP 60 252 479; *Chem. Abstr.* (1986). **105**, 42846x.
- Tsutomu, I., Toshiaki, K., Hitoshi, S., Yoshinori, T. & Katsutoshi, I. (1989). Jpn Kokoi Tokyo Koho JP 01 106 866; *Chem. Abstr.* (1989). 111, 194759h.
- Vichlayev, Yu. I., Il'inskii, B. I., Raevskii, K. S., Batulin, Yu. M., Grandberg, I. I. & Kost, A. N. (1962). Farmakol. Toksikol. (Moscow), 25, 27–32; Chem. Abstr. (1962). 57, 14388d.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.